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Abstract. We formulate a higher-rank version of the boundary measurement map for
weighted planar bipartite networks in the disk. It sends a network to a linear combi-
nation of SLr webs, and is built upon the r-fold dimer model on the network. When
r is 1, our map is a reformulation of Postnikov’s boundary measurement used to co-
ordinatize positroid strata. When r is 2 or 3, it is a reformulation of the SL2 and SL3

web immanants defined by the second author. The basic result is that the higher rank
map factors through Postnikov’s map. As an application, we deduce generators and
relations for the space of SLr webs, reproving a result of Cautis-Kamnitzer-Morrison.
We establish compatibility between our map and restriction to positroid strata, and
thus between webs and total positivity.

Résumé. Nous formulons une version de rang supérieur de la carte de mesure des
limites pour les réseaux biparités planaires pondérés dans le bureau. Il envoie un
réseau á une combinaison linéaire de bandes pour SLr et est construit sur le modéle
dimére á pli r sur le réseau. Lorsque r est 1, notre carte est une reformulation de la
mesure de fronti’ere de Postnikov utilisée pour coordonner les strates positroÃ¯des.
Lorsque r est 2 ou 3, il s’agit de la reformulation des immanents de bande SL2 et
SL3 définis par le second auteur. Le résultat de base est que les facteurs de carte
de rang supérieur par la carte de Postnikov. En tant qu’application, on déduit des
générateurs et des relations pour l’espace des bandes SLr, reprochant un résultat de
Cautis-Kamnitzer-Morrison. Nous établissons la compatibilité entre notre carte et la
restriction aux strates positroÃ¯des, et donc entre les bandes et la positivité totale.
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Introduction

The Grassmannian Gr(k, n) of k-planes in Cn is an algebraic variety which has been well-
loved in algebraic combinatorics. This paper links two combinatorial tools – briefly, dimer
configurations and webs – which have been used to study Gr(k, n) and its (homogeneous)
coordinate ring C[Gr(k, n)]. Both approaches have a similar flavor – each involves certain
planar diagrams in a disk, and each relies heavily on local diagrammatic moves/relations
amongst such diagrams. We show that this resemblance is not coincidental, and that
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these approaches are in some sense dual to each other. Moreover, statements on each
side can be translated to the other to give meaningful consequences.

The first approach starts with a choice of network N, meaning a planar bipartite graph
in the disk whose edges are weighted by nonzero complex numbers. Such a network
comes with two parameters: n (the number of boundary vertices) and k (the excedance).
The key operation is Postnikov’s boundary measurement map

N 7→ (∆I(N))
I∈([n]k )

∈ Gr(k, n) (0.1)

sending a network N to its (n
k) boundary measurements. Each boundary measurement

∆I(N) is a complex number obtained by summing over dimer configurations of N whose
boundary data is I. The striking feature is that for any network, the ∆I(N) satisfy the
well-known Plücker relations, so the image of the boundary measurement is a point in
the Grassmannian.

The second approach considers a distinguished class of functions on Gr(r, n), in-
dexed by planar diagrams known as SLr-webs. Let us consider the space W(r, n) =
HomSLr((C

r)⊗n, C). The homogeneous coordinate ring C[Gr(r, n)] can be viewed as an
algebra of SLr-invariants, andW(r, n) is a subspace of C[Gr(r, n)]. We will call elements
of W(r, n) tensor invariants. An SLr-web diagram is a planar bipartite graph in the disk,
with its edges labeled by positive integers so that sum of the labels around each internal
vertex is r. We denote by FS(SLr) the vector space of formal sums of SLr web dia-
grams. Each web diagram determines an element1 of W(r, n), and the resulting map
FS(SLr)→W(r, n) is surjective.

Webs can be used to study more general tensor invariant spaces, and other homo-
geneous pieces of C[G̃r(k, n)], but in this extended abstract, we focus on a particular
situation where our results are easiest to state. Thus, we restrict attention to networks N
whose number of boundary vertices n is a multiple of its excedance k, i.e. n = kr. For
these N, we construct an r-fold boundary measurement map

N 7→Webr(N) ∈ W(r, n), (0.2)

sending a network to a particular formal sum of webs. Its key feature (our Theorem 1)
is that it factors through the boundary measurement map (0.1). That is – if N and N′

are two networks with the same boundary measurements, then Webr(N) = Webr(N′)
as tensor invariants, even though these will typically be different formal sums of webs.
When r is 2 or 3, this reduces to the construction of Temperley-Lieb and web immanants
via the double-dimer and triple dimer models studied by the second author [6]. We
also show (Theorem 2) that (0.2) induces a natural isomorphismW(k, n) ∼= W(r, n)∗. In
fact, it gives rise to an isomorphism W(r, n)∗ → W(k, n) × ε of Sn-modules, where ε

1In fact, the diagrams defined in this introduction only determine a tensor invariant up to a sign. One
can choose signs by picking a perfect orientation of this diagram.



From dimers to tensor invariants 3

is the sign representation. Thus, we get an Sn-equivariant pairing between SLk and SLr
invariant spaces (unique up to scalars, due to the irreducibility of these Sn-modules).

Now we outline the rest of the abstract. Section 1.1 reviews the boundary measure-
ment map for networks via dimer configurations [6], local moves on networks, and Post-
nikov’s connectedness theorem for networks with the same boundary measurements.
Section 1.2 gives the basics of tensor invariants and web diagrams through an exam-
ple. In Section 2.1 we make our main definition, i.e. the r-fold boundary measure-
ment map (0.2), and introduce the closely related immanant map. Section 2.2 discusses
one of our main applications. A guiding problem in the history of web combinatorics
was to find a complete set of diagrammatic moves describing the kernel of the map
FS(SLr) → W(r, n). This problem was solved when r = 3 by Kuperberg [5], fur-
ther studied when r > 3 in [2, 8], and settled by Cautis-Kamnitzer-Morrison [1]. Our
Theorem 3 says that the completeness of the relations [1] follows from our Theorem 1
and Postnikov’s connectedness theorem. Finally, in Section 2.3, we make a connection
between webs and the celebrated positroid subvarieties Π ⊂ Gr(k, n). For each Π, we ex-
plain how our duality identifies (the multilinear part of) C[Π] with a naturally defined
subspace of W(r, n). We believe that this duality hides many surprising relationships
between positroids and webs.

1 Background

1.1 Networks, boundary measurements, and Postnikov’s Theorem

Let Gr(k, n) the Grassmannian of k-dimensional subspaces in a fixed n-dimensional com-
plex vector space, and let G̃r(k, n) denote the affine cone over Gr(k, n) with respect to
the Plücker embedding Gr(k, n) ⊂ P(n

k)−1. The affine cone is the subset of C(n
k) whose

coordinates satisfy the Plücker relations. The coordinate ring C[G̃r(k, n)] is generated by
Plücker coordinates (∆I)I∈([n]k )

; such a coordinate ∆I can be thought of as a maximal minor

of a k× n matrix using the columns indicated by I.
By a planar bipartite graph in the disk we mean a graph G embedded in a closed disk,

with its vertices colored in two colors (black and white) such that edges join vertices of
opposite color. We suppose that there are exactly n vertices of G on the boundary of the
disk, and label these 1, . . . , n in clockwise order. Furthermore, we make the simplifying
assumption that all of the boundary vertices are black and that each boundary vertex is
incident to at most one edge.

By a network N we will mean a planar bipartite graph whose edges have
been weighted by nonzero complex numbers. A dimer configuration on N (or al-
most perfect matching of N), is a subset π of edges of N that uses each interior
vertex exactly once (and uses each boundary vertex one or zero times). The
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weight wt(π) is the product of the weights of the edges used in π. The bound-
ary subset I(π) ⊂ [n] is the set of boundary vertices that are used in π. The
cardinality k = |I(π)| depends only on N (not on the choice of π). Explicitly:
k = no. of interior white vertices in N minus no. of interior black vertices. We call the
number k the excedance of N.

The boundary measurement ∆I(N) is a weight generating function for dimer configu-
rations with boundary I:

∆I(N) = ∑
π : I(π)=I

wt(π). (1.1)

Proposition (Kuo [4], Postnikov-Speyer-Williams [10], Lam [7]). The boundary measure-
ments (∆I(N)) ∈ C(n

k) determine a point X̃(N) in the affine cone G̃r(k, n), and thus a point
X(N) ∈ Gr(k, n) (provided at least one of the Plücker coordinates of X̃(N) is not zero).

That is, the boundary measurements satisfy the Plücker relations.
It is easy to verify that the following local moves can be applied to a network N to

yield a new network N′ satisfying X(N′) = X(N). Thus the boundary measurements
differ by a common scalar α, and we write X̃(N) = αX̃(N′).

(G) Gauge equivalence: If e1, e2, . . . , ed are incident to an interior vertex v, we can mul-
tiply all of their edge weights by the same constant α ∈ C∗. The resulting network
N′ satisfies X̃(N) = αX̃(N′).

(M1) Spider move, square move, or urban renewal: assuming the leaf edges of the spider
have been gauge fixed to 1, the transformation is

a′ =
a

ac + bd
b′ =

b
ac + bd

c′ =
c

ac + bd
d′ =

d
ac + bd

(1.2)

a

d

b

c
a′b′

d′c′

and X̃(N) = (ac + bd)X̃(N′).

(M2) Valent two vertex removal. If v has degree two, we can gauge fix both incident
edges (v, u) and (v, u′) to have weight 1, then contract both edges.

(R1) Multiple edges with same endpoints is the same as one edge with sum of weights.

(R2) Leaf removal: Suppose v is a leaf, and (v, u) the unique edge incident to it. Then
we can remove both v and u, and all edges incident to u.
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(R3) Dipoles (two degree one vertices joined by an edge) can be removed.

On the other hand, the following is one of the deepest results on the combinatorics
of networks:

Theorem (Postnikov [9]). If N and N′ satisfy X̃(N) = X̃(N′), then they are connected to each
other by a finite sequence of these moves. If furthermore both of these networks have the minimal
number of faces in their move-equivalence class, then they are connected by the moves (M1) and
(M2).

1.2 Tensor invariants and webs

Let U be an r-dimensional vector space. A tensor invariant is an element of the space
W(r, n) = HomSL(U)(U⊗n, C), i.e. an SL(U)-invariant multilinear function of n vectors
v1, . . . , vn ∈ U. Such invariants only exist when n = kr is a multiple of r. In our examples,
we assume that we have chosen a basis E1 . . . , Er for U, satisfying E1 ∧ · · · ∧ Er = 1.

Webs are convenient way of encoding tensor invariants by planar diagrams. Before
making the definition, recall that a perfect orientation O of a planar bipartite graph G is
a way of directing the edges in G so that every white vertex has outdegree 1 and every
black vertex has indegree 1. We note that if G has excedance k, then O will have exactly
k boundary vertices that are sinks and n− k boundary vertices that are sources.

Definition (SLr web diagram). Let D be a disk with n = kr boundary vertices. An SLr
web Ŵ is a perfectly oriented planar bipartite graph in D, with each of its edges e labeled
by an integer m(e) ∈ [r− 1], so that the sum of the incoming labels equals the sum of the
outgoing labels at every interior vertex. We further require that every boundary source
edge has label equal to 1.

To avoid technicalities, we will assume that Ŵ has been perfectly oriented so that it is
without oriented cycles, because it simplifies the association of a tensor invariant to Ŵ.
If no such perfect orientation is available, one has to remove oriented cycles by tagging
certain edges [1].

The white and black vertices in a web diagram Ŵ correspond to the basic SL(U)-
invariant tensors

a1∧
(U)⊗ · · · ⊗

as∧
(U)

white→
a1+···+as∧

(U) and
a1+···+as∧

(U)
black→

a1∧
(U)⊗ · · · ⊗

as∧
(U).

(1.3)
The first map in (1.3) is the exterior product map, and the second map is the SL(U)-
equivariant map that splits up a skew-symmetric tensor x1 ∧ · · · ∧ xb as a signed sum of
its constituent parts, where b = a1 + · · ·+ as.

An edge with label m(e) = ai in Ŵ stands for the exterior power
∧ai(U) in (1.3). To

evaluate Ŵ on some input vectors (v1, . . . , vn), we place the input vector vi at boundary
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vertex i and let the vectors flow along the edges of Ŵ, applying the maps (1.3) as indi-
cated by the labels on Ŵ. An input vector vi sitting at a boundary sink does not go any-
where during this flow. The flow ends with a tensor ti sitting at the edge for this bound-
ary sink, and we get a number from this edge by taking the pairing ti ∧ vi ∈

∧r(U) ∼= C.
Rather than making these definitions more carefully, we refer the reader to [1], and offer
an illustrative example.

Example 1. Consider the following SL4 web Ŵ (edges labels equal to 1 are omitted).
The underlying graph for Ŵ has excedance 2, and there are exactly 2 boundary sinks
at vertices 4 and 6. Let E1, . . . , E4 be standard basis vectors for U ∼= C4. In the second
figure, we indicate how to evaluate Ŵ on the simple tensor E = E1⊗ E2⊗ E3⊗ E4⊗ E1⊗
E2 ⊗ E3 ⊗ E4 ∈ U⊗8. Begin by placing the ith tensor factor of E at boundary vertex i.

1

2

3
4

5

6

7

8

2

3

3

3
E1

E2

E3
E4

E1

E2

E3

E4

E23

E123

E123

E1
E341

Vectors flow along directed arrows until they hit a black vertex, which in this example
happens when the wedge product E1 ∧ E2 ∧ E3 is at the black interior vertex of Ŵ. The
second map in (1.3) splits this tensor up as a signed sum

(E1 ∧ E2)⊗ E3 − (E1 ∧ E3)⊗ E2 + (E2 ∧ E3)⊗ E1, (1.4)

but only one of these three terms flows on to pair nontrivially with the vectors at vertices
4 and 6. The flow stops with E123 at vertex 4 and E341 at vertex 6. We obtain a number
at both of these vertices by pairing with corresponding vector from E. That is, at vertex
4 we get a sign of +1 from the wedge (E1 ∧ E2 ∧ E3)∧ E4, and vertex 6 we get (E3 ∧ E4 ∧
E1) ∧ E2 = +1. Therefore, the final value for Ŵ|E is 1 · 1 · 1 = 1, obtained as the product
of the signs from boundary vertices 4 and 6 and the interior black vertex.

We remark that, unlike most authors [1, 5], we do not require that the internal ver-
tices of a web diagram are always trivalent. Requiring trivalence is reasonable, because
it can be shown that all possible SL(U)-equivariant maps amongst tensor products of∧i(V) come from compositions of maps involving three tensor factors, but it seems in-
convenient from the networks perspective that we embrace in this paper.
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Example 2 (Webs in small rank). Let v1, . . . , vn ∈ U and Ŵ be an SLr web. Think of the
vector vi sitting at boundary vertex i of Ŵ. When r = 1, then U ∼= C, and Ŵ can be
thought of as a monomial in the vectors v1, . . . , vn. When r = 2, an SL2 web Ŵ consists
of a disjoint union of a) oriented cycles of even length, and b) directed paths vi → vj
between boundary vertices. Each oriented cycle contributes a multiplicative factor of
2 when Ŵ is evaluated on v1, . . . , vn. Changing the orientation on a path changes the
web by a minus sign. Thus, ignoring these signs, and removing all oriented cycles, SL2
webs are spanned by crossingless matchings on the boundary vertices. In fact – these
crossingless matchings are a basis forW(2, 2r).

A result in similar spirit is true when r = 3. In this case, the sign of a web does
not depend on the choice of a perfect orientation. Thus, SL3 webs are typically drawn
without directed edges. There are specific diagrammatic rules for expressing any SL3 in
terms of a basis of non-elliptic webs [5], i.e. webs that are without 2-valent vertices (thus
all edges have label 1), and without interior faces bounded by 4 or fewer sides.

When r ≥ 4, the existence of a web basis satisfying enough “desirable” properties is
unknown.

The relation between webs and Grassmannians is as follows: the space W(r, n) sits
inside C[G̃r(r, n)] as a certain graded piece. More specifically, there is a Zn-grading of
C[G̃r(r, n)] given by the degree in each column. For example, the product of Plücker
coordinates ∆123∆256 ∈ C[G̃r(3, 6)] has grading (1, 2, 1, 0, 1, 1). The web space W(r, n)
coincides with the graded piece C[G̃r(r, n)](1,...,1) of functions using each column once.

2 Results

2.1 The main construction

Now we are set up to make the connection between almost perfect matchings and webs.
Suppose we are given r almost perfect matchings π1, . . . , πr of N. By superimposing
them we naturally obtain the following:

Definition. An r-weblike subgraph W ⊂ G (alternatively, W ⊂ N) is a subgraph of G with
each edge e labeled by m(e) ∈ [r − 1] in such a way that the sum of the labels around
each interior vertex is r. The weight of W is the product ∏e wt(e)m(e) of the edge weights
raised to the corresponding label. Furthermore, each boundary edge must have label 1.

Each r-weblike subgraph determines an SLr web up to a sign. To fix the signs we
can choose a perfect orientation O on N. If W is an r-weblike subgraph, we get an
SLr web Ŵ = Ŵ(W,O) by first directing the edges in Ŵ as governed by O, and then
modifying the edge labels so that if m(e) = a in W and e is directed from white→black
in O, then m(e) = r − a in Ŵ. For two different perfect orientations O and O′, the
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resulting tensor invariants are equal up to a sign Ŵ(W,O) = ±Ŵ(W,O′). We show
that there is a canonical choice of sign for the tensor invariant represented by a weblike
subgraph W, and denote the tensor invariant with this sign by boldface W ∈ W(r, n).
This canonical choice sign is defined via a certain equation specifying how W evaluates
on tensor products of basis vectors 2.

With this in mind, we can make our main definition:

Webr(N,O) = ∑
W⊂N

wt(W)W ∈ W(r, n). (2.1)

It is a C-linear combination of the boldface versions of the r-weblike subgraphs of N,
with the wt(W)’s serving as coefficients. We refer to Webr(N) as the r-fold boundary
measurement of N.

Example 3. Consider the pair of networks N and N′ given by

a c
b

d

e

f
c′ a′

b′

d′

e

f

,

where a′, b′, c′, d′ are related to a, b, c, d according to the spider move (1.2).
Their parameters are k = 2 and n = 6, and the letters a, a′, b, b′, . . . , e, f ∈ C× denote

edge weights. The network N has three r-weblike subgraphs, and the 3-fold boundary
measurement Web3(N) is a linear combination

abcde f + a2c2e f 2 2 + b2d2e f
2

2

(2.2)

with coefficients depending on a, . . . , f . On the other hand, Webr(N′) is a linear combi-
nation of two webs

a′c′e f

2

2

+ b′d′e f

2

2

. (2.3)
2A pesky detail is that it can happen that W = −Ŵ(W,O) for every perfect orientation O, i.e. the

correct choice of sign is not given by any perfect orientation.
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We can now state our main theorem on the r-fold boundary measurements (2.1):

Theorem 1. If N and N′ are two networks satisfying X̃(N) = X̃(N′), then Webr(N) =
Webr(N′) ∈ W(r, n).

That is, the r-fold boundary measurement map factors through the boundary mea-
surement map.

Example 4. Continuing with Example 3, recall that a′, b′, c′, d′ are related to a, b, c, d by
(1.2). The networks N and N′ are related by (M1), and X̃(N) = (ac + bd)X̃(N′). It
follows that Web3(N; λ) = (ac + bd)3 Web3(N′; λ). By equating the coefficient of abcde f
in (2.2) with the coefficient of abcde f

(ac+bd)3 in (2.3), we deduce the square move for SL3 webs:

=

2

2

+

2

2

. (2.4)

Theorem 1 leads to an interesting relationship between SLk and SLr web spaces. Let
ϕ ∈ W(r, n)∗ be a functional on the SLr web space. Let N be a network with excedance k
and n = kr boundary vertices. By Theorem 1, the function X̃(N) 7→ Webr(N) is well-
defined (it doesn’t depend on the choice of network N representing X̃(N) ∈ G̃r(k, n)).
This map is only defined on the part of Gr(k, n) swept out by X̃(N)’s, but we prove
that it extends to a regular function on G̃r(k, n). We obtain in this way a linear map
W(r, n)∗ →W(k, n) ⊂ C[G̃r(k, n)], which we call the immanant map.

We prove that the immanant map is an isomorphism. Moreover, both tensor invariant
spaces W(k, n) and W(r, n) carry an action of the symmetric group by permutations of
the vectors. These Sn-modules are irreducible – corresponding to the Specht modules
of rectangular shapes k × r and r × k respectively – and are related to each other by
tensoring with the sign representation ε.

Theorem 2. The immanant mapW(r, n)∗ →W(k, n)⊗ ε is an isomorphism of Sn-modules.

We note that Theorem 2 does not seem immediately obvious, since the symmetric
group does not act in a natural way on networks.

When r is 2 or 3, the second author previously defined SL2 and SL3 web immanants [6].
These web immanants are obtained by applying the immanant map to the functional
ϕW ∈ W(r, n)∗, where W is a basis web and ϕW is the dual basis element. In the case
that r ≥ 4, since we are without a notion of a web basis, we believe that Webr(N) is the
more fundamental object.
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2.2 Deducing skein relations from moves on networks

According to Theorem 1, the element Webr(N) only depends on X̃(N). Thus it is un-
changed when we perform the local moves from Section 1.1 to N. However, the expression
for Webr(N) inside FS typically changes after each local move. In this way, we obtain
relations amongst SLr webs.

As it turns out, the diagrammatic relations on webs we obtain in this way are exactly
the Cautis-Kamnitzer-Morrison relations [1]. For example, by souping up Example 2,
one sees that the spider move (M1) for networks encodes the square move for SLr webs
[1, Equation 2.10]. In this way, one could obtain a different proof of Theorem 1.

In our paper, we employ a different perspective: we give what we consider to be the
“right” proof of Theorem 1. Then, we give an “abstract” argument, based on our duality
results, that the diagrammatic relations amongst webs encoded by the local moves on
networks are a complete set of relations amongst webs.

Theorem 3. The relations amongst networks imposed by Theorem 1 generate the kernel
FS(SLr)→W(r, n).

This is an independent proof of the sufficiency of the Cautis-Kamnitzer-Morrison
relations for SLr webs. We note that [1] works in the generality of representations of the
quantum group Uq(sln), whereas our proof currently only makes sense when q = 1.

2.3 Positroids and webs

Our networks N are closely related to a special stratification of the Grassmannian by
positroid varieties. The survey [7] outlines the many senses in which positroids (and
positroid varieties) are better behaved than matroids (and matroid varieties).

For any point x ∈ Gr(k, n), the matroid of x is the realizable matroid M(x) formed
by the subsets I ∈ ([n]k ) such that ∆I(x) 6= 0. The matroid variety associated to a matroid
M is the closure in Gr(k, n) of the set of points whose matroid isM.

The totally nonnegative Grassmannian Gr(k, n)≥0 ⊂ Gr(k, n; R) consists of points that
can be given by k× n matrices with real entries, whose Plücker coordinates are all ≥ 0.
A matroid is a positroid if it is the matroid of a totally nonnegative point x ∈ Gr(k, n)≥0.
The corresponding matroid variety Π = ΠM is called a positroid variety.

Theorem (Postnikov, Knutson-Lam-Speyer [3]). Let G be a planar bipartite graph in the disk.
As N varies over networks with graph G and edge weights in C∗, the boundary measurements
X(N) sweep out a Zariski dense subset of a single positroid variety Π = Π(G). Furthermore,
every positroid variety Π arises in this way from some planar bipartite graph G.

Let M be a positroid. Let I(Π) = {∆I : I /∈ M}. Then I(Π) is the homogeneous
prime ideal of ΠM [3], i.e. the surjection C[G̃r(k, n)] � C[Π] has kernel I(Π). The
grading on C[G̃r(k, n)] descends to a grading on C[Π].
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Since W(k, n) and W(r, n) are dual, the map C[G̃r(k, n)](1,...,1) � C[Π](1,...,1) should
be dual to an inclusion of some subspace intoW(r, n). Let us identify this subspace:

Let x ∈ W(r, n), thought of as an SLr-invariant function of vectors v1, . . . , vn ∈ U.
For any I ∈ ([n]k ), there is a partial evaluation map W(r, n) → W(r − 1, n − k), denoted
x 7→ x

∣∣
I , obtained by specializing vi = Er for each i ∈ I. The resulting function is

an SLr−1-invariant function of n − k vectors. We denote by W(r, n)M ⊂ W(r, n) the
subspace of W(r, n) consisting of tensors x whose partial evaluation x

∣∣
I is 0 for every

I /∈ M.

Theorem 4. The surjection C[G̃r(k, n)](1,...,1) � C[Π](1,...,1) is dual to the inclusion
W(r, n)M ↪→ W(r, n). In particular dim(C[Π](1,...,1)) equals dim(W(r, n)(M)). If G is a
planar bipartite graph with positroid M, then subspace W(r, n)M is spanned by either of the
following sets: i) the elements Webr(N), as N varies over networks whose underlying graph is
G, or ii) the r-weblike subgraphs of G.

This characterization of dim(C[Π](1,...,1)) may be easier to work with than the charac-
terization using promotion and cyclic Demazure crystals given in [7, Section 12].

Example 5. Focus on the spaceW(3, 9) of SL3-invariant multilinear functions of v1, . . . , v9.
We have dim(W(3, 9)) = # of 3× 3 SYT’s = 42. The basis webs (up to rotation) are listed
in (2.5). LetM be the positroidM = ([9]3 )\{∆789}. The subspaceW(3, 9)M is the kernel
of the mapW(3, 9)→W(2, 6) specializing v7 = v8 = v9 = E3. A web W is inW(3, 9)M
exactly when W has a fork connecting vertices 7 and 8 or 8 and 9. By examining the 42
webs (2.5), we see there are exactly 37 webs that are inW(3, 9)M, and five webs that are
not. From Theorem 4, dim(C[Π](1,...,1)) = 37.

In (2.5), we placed E3’s at the three consecutive boundary vertices without forks. This
gives 4 of the webs W such that W|{7,8,9} 6= 0; the 5th web is obtained by reflecting the
third web in (2.5) along the vertical axis. Once the boundary E3’s are placed, and certain
interior E3’s are forced, the leftover interior edges must be labeled by E1’s and E2’s. This
produces an SL2 web, as drawn in (2.5). The 5 resulting crossingless matchings on six
vertices are the 5 basis webs forW(2, 6). Thus, no nontrivial linear combination of these
five SL3 webs produces an element ofW(3, 9)M, i.e. W(3, 9)M is the span of the 37 webs
that vanish under partial evaluation.
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